
RFGM-series RF power modules

User manual

Warning! This equipment may be dangerous. Please read the entire user manual carefully before using the product.

Table of content

DESCRIPTION	3
APPEARANCE AND LAYOUT	4
CONNECTORS / PINS / INTERFACE SIGNALS	5
SPECIFICATIONS	9
DIMENSIONAL DRAWING	11
HOW TO ORDER?	12
APPENDIX 1. SOFTWARE DESCRIPTION	13
APPENDIX 2. RS-485 INTERFACE DESCRIPTION	18
APPENDIX 3. INSULATION DIAGRAM (SAFETY DIAGRAM)	24

Description

RFGM is a series of RF power modules providing at its output high voltage sine wave in a single frequency mode from radio-frequency range. Output frequency is selectable at the moment of order from sub-megahertz range to 81.36MHz, factory fixed. Output power varies from 300W to 1500W in dependence on model. See also *How to order?* section on page 12 for details and list of models available.

All modules are cooled with a built-in fan. Rotation speed of the fan in controlled by module's MCU.

Please note, the modules are not a stand-alone solution and for proper operation they need external sources of high (300-500VDC) and low (24VDC) voltage of the appropriate power. A typical application schema is given below:

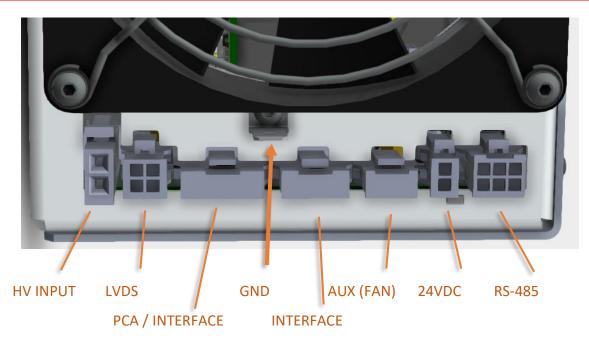
An average output power of the module can be regulated in two different ways:

- by varying the input DC voltage (an output power of RFGM module increases with the rise of its input voltage)
- by multi-kilohertz PWM of the output (set either by Power control signal or via RS-485). An average output power in this case is linear with duty cycle.

A power combining of multiple modules is possible on request. An output power obtained in this case can reach 3000W and beyond.

RFGM-series power modules can be controlled in two different ways – either via RS-485 digital interface or, alternatively, via signals of INTERFACE connector.

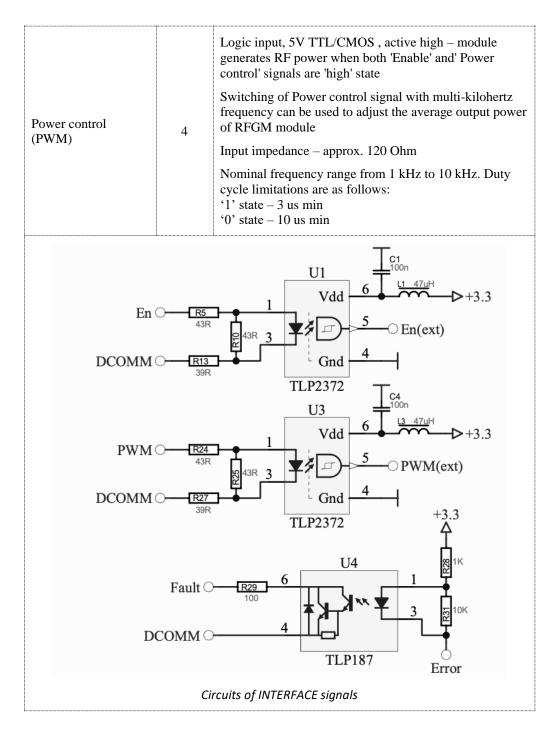
Appearance and layout



Side 1: Inputs and interfaces Side 1 contains high voltage input to the module (300VDC-500VDC), low voltage input to the module (24VDC), all the interfaces connectors (both digital and analogue) as well as a grounding stud

Side 2: RF Output Side 2 contains RF output only

Connectors / Pins / Interface signals



RS-485: Molex 43045-0601

Designation	Pin	Description	
-	1, 4	Reserved for future use	
RS485 B	2	Inverting Driver Output/Receiver Input	
RS485 A	3	Non-inverting Driver Output/Receiver Input	
RS485 SCREEN	5	Ground point for electrical screen of RS485 cable (N/C by default, available on request)	
RS485 COMM	6	Common wire for 'RS485 A' and 'RS485 B' signals	

INTERFACE: Molex 43650-0400

Designation	Pin	Description	
Fault	1	Logic output, open collector, active low – indicates either an internal failure of the module or that the module isn't ready to work	
		Once Fault occurs, 'Enable' should be reactivated to reset the Fault state	
Interface return (DCOMM)	2	Common wire for 'Enable', 'Power control' and 'Fault' signals	
Enable (En)	3	Logic input, 5V TTL/CMOS, active high – general enable to the module Input impedance – approx. 120 Ohm	

PCA/INTERFACE: Molex 43650-0500

Capacitor charger of PCA-series is to be connected here.

Designation	Pin	Description
Interface return	1	
Fault	2	
Inhibit	3	See user manual of PCA-series capacitor charger for the detailed signal description
Voltage program	4	
15V DC	5	N

An auxiliary connector exclusively used to connect the fan cooling RFGM module.

24VDC: Molex 43045-0202

Low voltage to the module

Designation	Pin	Description
+24VDC	1	24VDC power supply connection
COMM 24VDC	2	Maximal current consumption – 1A

HV INPUT: Molex 2601-3114

High voltage (up to 500VDC) to the module

Designation	Pin	Description
HV	1	High voltage power supply connection
COMM HV	2	Maximal input voltage – 500VDC Nominal input voltage is model dependent

LVDS: Molex 43045-0401

LVDS input is used either to run module in external synchronization mode or to organize a parallel connection of multiple modules. By default, LVDS connector in non-functional, but available on customer's request (see also *How to order?* section, p.12).

Designation	Pin	Description
+IN for 'slave' modules +OUT for 'master' modules	1	Logic input, LVDS – external oscillator non-inverting input (output)
-IN for 'slave' modules -OUT for 'master' modules	2	Logic input, LVDS – external oscillator inverting input (output)
LVDS COMM	3	Common wire for external oscillator input (output)
LVDS SCREEN	4	Ground point for electrical screen of external oscillator cable (N/C by default, available on request)

GROUND: 6.35mm Quick-Connect terminal, male

Protective grounding should be organized by using this stud.

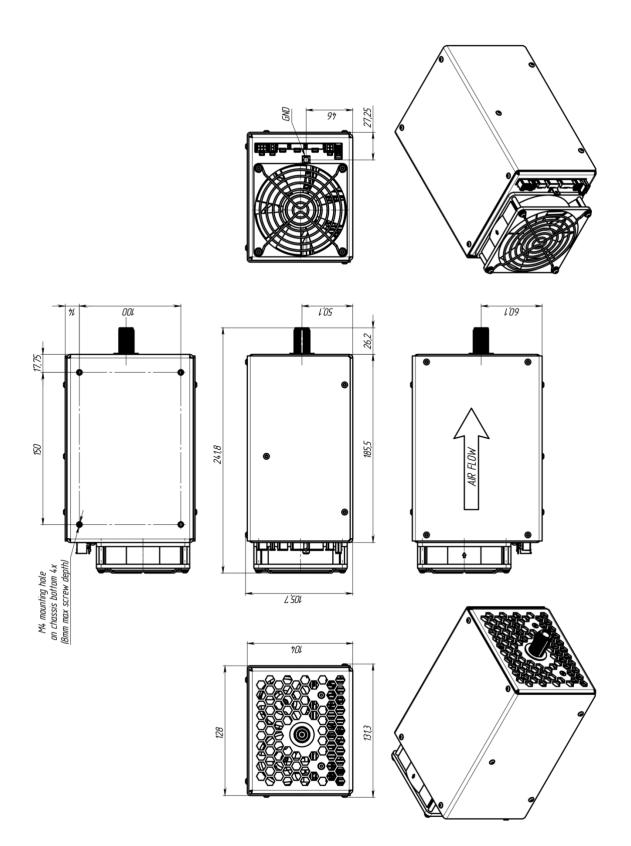
RF OUTPUT: N-TYPE

N-TYPE RF connector by Amphenol (5/8-24 thread, female). RF Output return is interconnected to RFGM chassis.

Grounding policy

The following considerations should be taken into account:1. RF Output return is interconnected to RFGM chassis.2. Due to safety reasons, RFGM chassis must be protectively grounded.

ELECTRICAL


General	
Product	RF power module
Schematics	Class E power generator
Input	
HV Input	DC voltage, regulated,
	300V-500V max (model dependent)
HV power consumption	2000W max (model dependent)
LV Input	24VDC
LV current consumption	1A max
Output	
Load impedance	50 Ohm
Frequency	6.78MHz, 13.56MHz, 27.12MHz,
	40.68MHz, 81.36MHz (other on
	request),
	fixed, selectable at the moment of
	order
Peak power (W _{MAX})	1500W max (model dependent)
Duty cycle	0-100%
Average power	0-W _{MAX}
Output connector	N-TYPE RF connector by
	Amphenol
	(5/8-24 thread)
Interfaces	
Analogue	+ (a set of TTL signals)
Digital	+ (RS-485 by default, other on
	request)

Other			
Protections	- Overtemperature protection		
	- Short-circuit tolerance		
	- Open-circuit tolerance (short-		
	time)		
	- Protection from too high		
	reflected power		
Safety features	Power monitors		
	Capacitive coupling of the output		
Grounding	Output return is connected to the		
	chassis		
Cooling	Forced air cooling with built-in fan		
Power combining of	+ (two modules can be connected in		
multiple modules	master-slave mode; for connection		
	of three and more modules an		
	appropriate controller is needed; an		
	appropriate power combiner is		
	needed in all cases)		

MECHANICAL

Dimensions	See dimensional drawing below
Weight	Approx. 2.5 kg

Dimensional drawing

RFGM-XXX-YYY-ZZ, where:

- XXX means the working frequency of the module; the most standard frequencies are 6.78MHz, 13.56MHz, 27.12MHz, 40.68MHz and 81.36MHz, other frequencies are available on request
- YYY means the maximal output power of the module; typically the maximal power is in range from 300W to 1500W, other output power values can be considered on request
- ZZ means the type of the module; none or 0 – stand-alone module (not suitable for master-slave operations) M – master (master unit for master-slave operations) S – slave (master unit for master-slave operations)

Master-slave connection of two modules allows to increase the maximal output power twice and achieve 1000W to 3000W power levels.

Frequency	Output power	Description	Part numbers
0.5-4MHz	Up to 1500W	Easily available as modifications of 6.78MHz model All parameters are configurable	Custom
< 70 MI	800W	Suggested HVDC source - PCA-10-300V-PD	RFGM-6.78-800
6.78MHz	1500W	Suggested HVDC source - PCA-20-500V-PD	RFGM-6.78-1500
125000	800W	Suggested HVDC source - PCA-10-300V-PD	RFGM-13.56-800
13.56MHz 1500W		Suggested HVDC source - PCA-20-500V-PD	RFGM-13.56-1500
	500W	Suggested HVDC source - PCA-10-300V-PD	RFGM-27.12-500
27.12MHz 1000W	Suggested HVDC source - PCA-10-300V-PD for 800W operations and below or PCA-20-500V-PD for 1000W operations	RFGM-27.12-1000	
40.68MHz	500W	Suggested HVDC source - PCA-10-300V-PD	RFGM-40.68-500
81.36MHz	300W	Suggested HVDC source - PCA-10-300V-PD	RFGM-81.36-300

Examples (the most popular modifications):

Other modifications with different output power, operating frequency as well as other parameters are available on request.

Appendix 1. Software description

Software tool *RFUnit2GenDemo*, a service and demo utility for *Microsoft Windows* operating system, is supplied with every RFGM-series module to control it.

RFUnit Control Demo Utility			1
	nnect Data acq. interval, ms 250	Connected Monitor Window	
atus PWM and External Enable control	I PID Settings Maintenance Tuning data	Power Control	
SR1 0x0115	SR2 0x40B8	PID Regulated Power	
RF enable ON	Default settings loaded	PID Regulated Power	
Internal PWM ON	Init stage active	Estimated Power	
FAN control ON	Settings changed		
Rotation tracking ON	PID controller active	Short Burst	
PCA enable ON	PID controller ready		
External Enable allowed	RF started	Required	
External PWM allowed	Last command fail		
Ready	Data changed	Power (Watt) 100 🛨 🛷	
FAN is tested	PCA fault RF error flag		
Reserved	Read only mode	Time (ms) 1	
Reserved	Modbus Default settings		
Reserved	Reduced Energy Mode active	Max Energy, 0.0	
Reserved	Modbus timeout flag	Joules U.U	
Reserved	Extended access denied		
External Enable ON	Overtemp flag	ON OFF	
	Modbus Server counters	FW Version: 2.0.0	
Error stack Top	In Out Err		
no error	1368 1368 0	UC_ID: 948V1P-16 T, °C	28
		Voltage, V	82.6
		Forward Power, W	99.9

It monitors:

- Power switch temperature
- Output Voltage of an external HV DC source
- Forward power
- Reflected power
- Transferred energy (in some modes)
- Onboard subsystems status
- Communication statistics

And also allows to control:

- Power generating mode
 - Embedded PID Controller's regulated Forward Power
 - o Estimated (Forward) Power
 - Short Burst (for a given time)
- *Required (Forward) power* level
- *External Enable* use
- External/Internal *PWM* source
- *Internal PWM* source parameters

0.0

0.0

0

Reflected Power, W

Last Burst

Energy, Joules

Last Burst Duration, ms

- *Embedded PID Controller*'s settings
- Communication port settings and nonvolatile memory.

Power generating modes: *PID Regulated*

Required forward power (can be preset or changed on the go, Modbus registers 36-37) is regulated by embedded PID controller. This mode allows using *External Enable* and doesn't allow to activate PWM.

Estimated Power

Required forward power (can be preset or changed on the go, Modbus registers 36-37) is achieved by settings the appropriate PCA voltage (firmware calculated). This mode allows using *External Enable* and allows *PWM* applying.

Short Burst

Required forward power (should be preset, Modbus registers 36-37) is achieved by setting the appropriate PCA voltage (firmware calculated). Power generation lasts no longer than the set *Time* (in milliseconds, Modbus register 109) and is limited by the set *Max Energy*, transferred to the load (in Joules, Modbus registers 110-111) during the "burst". After "burst" completion, amount of transferred energy and actual "burst" duration may be read from Modbus registers 140-141 (Joules) and 112 (milliseconds). This mode allows using *External Enable* and doesn't allow to activate *PWM*.

External Enable and PWM control

External Enable (external hardware provided logic) signal works as hardware **ON**(high level)/**OFF**(low level) button like software buttons "ON" and "OFF" demo utility's *Power Control* panel. It starts/stops power generation if allowed (write Modbus register 34 or use demo utility's *PWM and External Enable control* tab to allow/deny select).

If use power generating mode *Estimated Power*, it is possible to apply *Power control* (**PWM**) to RF power output:

- Internal, with selected period (Modbus registers 46-47) and pulse width (Modbus registers 44-45). PWM start/stop with command (Modbus register 32) or click *On* and *Off* buttons demo utility's *PWM and External Enable Control* tab.
- External (external hardware provided logic)

Write Modbus register 33 to select PWM source.

RFUnit Control D Select serial port C Status PWM and Ed PWM Source		Data acq. interval, ms 250 📩 laintenance Tuning data External Enable	Connected Monitor Window Power Control Mode
 Internal (uC) External 	Period, us 1000.000 ** Pulse 3.000 ** Mapply On Off	Allowed	PID Regulated Power Estimated Power Short Burst Required Power (Watt) 100 × ✓ Time (ms) 1 × Max Energy, 0.0 × Joules ON OFF
Error stack	Top In	s Server counters Out Err 2216 0	FW Version: 2.0.0 UC_ID: 948V1P-16-00600046

PID controller

PID (proportional-integral-derivative) controller settings are factory adjusted and may be corrected in accordance with the load's characteristics. Use demo utility or write Modbus registers 38-43.

🔛 RFUnit Control Demo Utility	
Select serial port COM4 💌 Connect Data acq. interval, ms 250 📼	Connected Monitor Window
Status PWM and External Enable control PID Settings Maintenance Tuning data	Power Control
<control output=""> = Kc * (e(t) + ∫e(t)dt / Ti + Td * de(t)/dt)</control>	Mode PID Regulated Power
Kc 0.200 *	Estimated Power
Ti 0.200 🛓	Short Burst
Td 0.050	Required
	Power (Watt) 100 × ✓ Time (ms) 1 × Max Energy, 0.0 × Joules OFF
Modbus Server counters	FW Version: 2.0.0
Error stack Top In Out Err	UC_ID: 948V1P-16-00600046
no error 2946 0	

Communication port settings and nonvolatile memory

Modbus **Node ID** (1..247), **Baud rate** (up to 230400) and **Parity** (Odd, Even, None) may be adjusted (use "MB and SerialPort Settings" button on Tab Page "Maintenance" of the demo utility).

New settings (for communication port, power generating mode, required power and so on) made using demo utility or writing to Modbus registers will be used as default on next power up if save it to module's nonvolatile memory (click button "Save to NV Memory" on Tab Page "Maintenance" of the demo utility or write Modbus register 35).

Current settings may be saved to file or early saved may be loaded if click buttons "Save Settings to file" and "Load Settings From File" accordingly.

🔡 RFUnit Control Demo Utility	_ 🗆 🗵
Select serial port COM4 Connect Data acq. interval, ms 250 💌	Connected Monitor Window
Status PWM and External Enable control PID Settings Maintenance Tuning data	Power Control
Settings Saved values are loaded Data changed Save to NV Memory MB and SerialPort Settings Image: Save Settings From File Save Settings to file Save Settings to file	Mode PID Regulated Power Estimated Power Short Burst Required Power (Watt) 100 * Time (ms) 1 * Max Energy, 0.0 * Joules ON OFF
Modbus Server counters Error stack Top In Out Err no error 3400 3400 0	FW Version: 2.0.0 UC_ID: 948V1P-16-00600046

Operations (via RS-485 interface)

- 1. Connect RFGM module to low voltage power supply, high voltage power supply, to the load and to your PC
- 2. Apply low voltage to RFGM module, run the software
- 3. Select serial port, where the module is connected to, press Connect button (in case of using demo utility)
- 4. Apply mains to high voltage power supply
- 5. Select power generating mode (write Modbus register 30), output power value (write Modbus registers 36-37), *External Enable* allowance and *PWM* source (if need)
- 6. Press **ON/OFF** buttons (in case of using demo utility) or write Modbus register 31 to start/stop RF generating and provide power to the output.

LEDs

Two colors (red and green) LEDs on module's Side 1 light as follows:

 Green continuous – module is powered up, RS-485 and Modbus were initialized with custom settings, no serial communication.

- Green blinking module is powered up, RS-485 and Modbus were initialized with custom settings, serial exchange with host is in progress.
- Green/Red toggling like previous, but module isn't ready (PCA fault active, or RF error active, or overheat).
- Yellow continuous module is powered up, RS-485 and Modbus were initialized with factory default settings, no serial communication.
- Yellow blinking module is powered up, RS-485 and Modbus were initialized with factory default settings, serial exchange with host is in progress.
- Yellow/Red toggling like previous, but module isn't ready (PCA fault active, or RF error active, or overheat).
- Red blinking RF generating is in progress.
- Red continuous main flash memory test fail, module is unworkable.

Appendix 2. RS-485 interface description

Embedded Modbus RTU server expects **periodic activity** (at least one valid Modbus package per second) to continue power generation. Else RF power generation is stopped emergently.

Function code	Description
03 (0x03)	Read Holding Registers
16 (0x10)	Preset Multiple Registers

Embedded Modbus RTU server supports following functions:

It is possible to use different software for RS-485 digital interface testing - for example *RFUnit2GenDemo* (an utility, provided by OEM Tech, see also *Software description* section), **QModBus** (a free Modbus master application) or your own

Modbus Register Mapping.

Address (Base 0), decimal	R/W ⁽¹⁾	Description	Data format
0	R	Status Register 1 (SR1)	Unsigned integer 16 bits: Bit 0: Internal RF "Enable" state 0-off, 1-on. Bit 1: Internal PWM state 0-off, 1-on. Bit 2: FAN control state 0-off, 1-on. Bit 3: Reserved. Bit 4: PCA "Enable" state 0-off, 1-on. Bit 5: External "Enable" allowance 0-not allowed, 1-allowed. Bit 6: PWM source 0-internal, 1-external. Bit 7: Ready (to start power generating) 0-not ready, 1-ready. Bit 8: FAN is tested 0-test fail, 1-test passed. Bit 9 – Bit 14: Reserved

			Dit 15. External "Erable"
			Bit 15: External "Enable"
			state
			0-off, 1-on.
			Unsigned integer 16 bits:
			Bit 0: Default settings loaded
			flag
			0-not loaded, 1-loaded.
			Bit 1: Init stage flag
			0-not active, 1-active.
			Bit 2: Settings changed flag
			0-not changed, 1-changed
			(communication parameters and
			other)
			Bit 3: PID controller run flag
			0-not running, 1-running.
			Bit 4: PID controller ready
			flag
			0-not ready, 1-ready.
			Bit 5: RF power generating
			started flag
			0-not started, 1-started.
			Bit 6: Last command failed
		Status Desistan 2	flag
1	R	Status Register 2	0-not failed, 1-failed.
		(SR2)	Bit 7: Data changed flag
			0-not changed, 1-changed
			(sources select, power mode,
			PWM, required power)
			Bit 8: PCA Fault is active
			flag
			0-not active, 1-active.
			Bit 9: RF error is active flag
			0-not active, 1-active.
			Bit 10: Read only mode flag
			0-read/write registers,
			1-ready only.
			Bit 11: Modbus default
			settings flag
			0-user settings,
			1-factory default.
			Bit 12: REM is active flag
			0-not active, 1-active
			(Reduced Energy Mode, auto-
			activated if reflected power
			activated in reflected power

			threshold exceeded for a long time, factory tuned) Bit 13: Modbus timeout flag 0- timeout not exceeded, 1- timeout exceeded. Bit 14: Extended access flag 0- granted, 1- denied.
			Bit 15: Overheat flag 0-not overheated, 1- Power switch overheated.
2	R/W	Error Stack Top value	Unsigned integer 16 bits. Error codes (Read): 0 – no error 1 – HV PS Fault 2 – RF error 3 – reflected power threshold exceeded 5 – overheat 7 – default settings was set 8 – heart beat timeout exceeded (1 second) 9 – HV PS output voltage is too high. Write any value to pop an Error Stack by one
3	R	Power switch temperature, °C	Unsigned integer 16 bits.
4 5	R	HV PS output voltage, Volts	Single precision float (IEEE754), little endian: Address 4 – low 16 bits, address 5 – high 16 bits.
6 7	R	Forward power monitor value, Watts	Single precision float (IEEE754), little endian: Address 6 – low 16 bits, address 7 – high 16 bits.
89	R	Reflected power monitor value, Watts	Single precision float (IEEE754), little endian: Address 8 – low 16 bits, address 9 – high 16 bits.
10 11	R	Modbus server: received requests counter (reset on power up)	Unsigned integer 32 bits, little endian: Address 10 – low 16 bits, address 11 – high 16 bits.

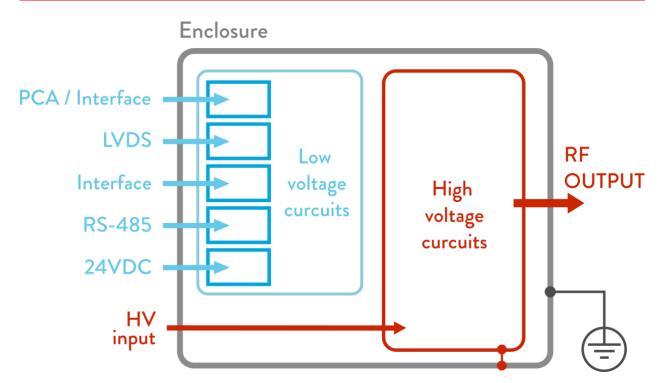
12 13	R	Modbus server: transmitted answers counter (reset on power up)	Unsigned integer 32 bits, little endian: Address 12 – low 16 bits, address 13 – high 16 bits.
14 15	R	Modbus server: error counter (reset on power up)	Unsigned integer 32 bits, little endian: Address 14 – low 16 bits, address 15 – high 16 bits.
16	R	Modbus server: buffer overflow errors count	Unsigned integer 16 bits.
17	R	Modbus server: bad CRC errors count	Unsigned integer 16 bits.
18	R	Modbus server: bad size errors count	Unsigned integer 16 bits.
19	R	Modbus server: bad function code errors count	Unsigned integer 16 bits.
20	R	Modbus server: address range errors count	Unsigned integer 16 bits.
21	R	Modbus server: registers quantity errors count	Unsigned integer 16 bits.
22	R	Firmware Version	Unsigned integer 16 bits. 10203 means version 1.2.3
23	R	Product ID	Unsigned integer 16 bits.
24 25 26 27 28 29	R	Embedded microcontroller's Device ID.	96-bit unique microcontroller ID (STM32G0x1 Device electronic signature)
30	R/W	Power generating mode	Unsigned integer 16 bits. 0 - Embedded PID Controller's regulated 1 - Estimated Power 2 – Short Burst (for a given time)
31	W	Power generating Start/Stop Command	Unsigned integer 16 bits. 0 – Stop, 1 – Start (in mode selected earlier)
32	W	Internal PWM Start/Stop Command	Unsigned integer 16 bits. 0 – Stop, 1 – Start (with PWM timing selected earlier)

33	W	PWM source select command	Unsigned integer 16 bits. 0 – Internal, 1 – External
34	W	External "Enable" allow/deny command	Unsigned integer 16 bits. 0 – deny, 1 – allow
35	W	Save ALL modified parameters to NV memory command(to use as defaults after next power up	Unsigned integer 16 bits. Write any value.
36 37	R/W	Required output power value	Single precision float (IEEE754), little endian: Address 36 – low 16 bits, address 37 – high 16 bits.
38 39	R/W	PID controller's Kc parameter	Single precision float (IEEE754), little endian: Address 38 – low 16 bits, address 39 – high 16 bits.
40 41	R/W	PID controller's Ti parameter	Single precision float (IEEE754), little endian: Address 40 – low 16 bits, address 41 – high 16 bits.
42 43	R/W	PID controller's Td parameter	Single precision float (IEEE754), little endian: Address 42 – low 16 bits, address 43 – high 16 bits.
44 45	R/W	Internal PWM generator's pulse width (microseconds)	Single precision float (IEEE754), little endian: Address 44 – low 16 bits, address 45 – high 16 bits.
46 47	R/W	Internal PWM generator's period (microseconds)	Single precision float (IEEE754), little endian: Address 46 – low 16 bits, address 47 – high 16 bits.
109	R/W	Required time interval for Short Burst power generating mode (milliseconds)	Unsigned integer 16 bits.
110 111	R/W	Max Energy for Short Burst power generating mode (Joules)	Single precision float (IEEE754), little endian: Address 110 – low 16 bits, address 111 – high 16 bits.
112	R	Last "shoot" actual duration for Short Burst	Unsigned integer 16 bits.

		power generating mode (milliseconds)	
140		Transferred energy (Joules), for last "burst" in	Single precision float (IEEE754), little endian:
141	R	Short Burst power	Address 140 – low 16 bits,
		generating mode.	address 141 – high 16 bits.

1. R – read only, W – write, R/W – read and write.

NonVolatile Memory


At power up all writable Modbus registers are initialized with values stored in module's nonvolatile memory. Any changes in settings (power mode, required power, External Enable, PWM settings, Modbus parameters and so on) may be saved to NV Memory to use as default after next power up (write Modbus register 35 or use "Save to NV Memory" button on Tab Page "Maintenance" of the demo utility).

Current settings may be saved to external file (use demo utility, Tab Page "Maintenance", click "Save Settings to file" button and follow instructions) for a future using.

It is possible to initialize module's nonvolatile memory with data from factory provided or previously saved custom external file (use demo utility, Tab Page "Maintenance", click "Load Settings From File" button and follow instructions).

Open demo utility's Tab Page "Tuning data" to see some factory and custom settings.

Appendix 3. Insulation diagram (safety diagram)

Gray - chassis (must be protectively grounded)

Red – high voltage circuits and circuits with no galvanic insulation from high voltage circuits

Blue – low voltage circuits; insulation of low voltage circuits from high voltage circuits is 4mm creepages, 4mm clearances, 1500V test voltage; insulation of low voltage circuits from other low voltage circuits is 2.5mm creepages, 2.5mm clearances, 1500V test voltage

Grounding policy

The following considerations should be taken into account: 1. RF Output return is interconnected to RFGM chassis.

2. Due to safety reasons, RFGM chassis must be protectively grounded.